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An operator-splitting �nite-element approach to the
8:1 thermal-cavity problem

D. Davis∗;† and E. B�ansch

Weierstrass Institute for Applied Analysis and Stochastics; Mohrenstrasse 39; D-10117 Berlin; Germany

SUMMARY

This article describes the methodology for, and results obtained from, our contribution to the thermal-
cavity benchmark test. Our solutions were obtained on graded rectangular grids for two di�erent time-
discretization schemes by applying a �nite-element procedure to the model equations, and a combination
of conjugate-gradient and GMRES solvers to the resulting matrix systems. Copyright ? 2002 John Wiley
& Sons, Ltd.
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INTRODUCTION

In the following we describe our contribution to a thermal-cavity benchmark problem held at
the First MIT Conference on Computational Fluid and Solid Mechanics 2001; a fully detailed
account of the problem can be found in Reference [1]. To discretize the governing equations
in time, an operator-splitting, multiple-step integrator was applied to the Navier–Stokes part,
while the energy equation was treated using one of two methods: a (�rst-order) backward-
Euler-type scheme and a Crank–Nicolson-type scheme, both with semi-implicit advective part.
For the spatial approximation, a standard Galerkin method was implemented, with the discrete
velocity and temperature spaces being de�ned by piecewise bi-quadratic, globally continuous
basis functions and the discrete pressure space by piecewise bi-linear, globally continuous
basis functions. Hence, the Taylor–Hood Q2 − Q1 element is used. Zero initial conditions
were adopted in all of our computations. Results were obtained for both time integrators
on grids comprising: (i) 11× 51, (ii) 21× 101 or (iii) 41× 201 elements; the grids were
furthermore graded near the vertical and horizontal walls of the cavity, owing to the presence
of very large temperature boundary layers there, notably during the initial transient phase.
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1020 D. DAVIS AND E. B �ANSCH

NUMERICAL APPROXIMATION

Temporal discretization

In order to meet the demands of e�ciency and accuracy, and avoid problems caused by
numerical damping and/or over-smoothing, the time-discretization procedure for the governing
system requires judicious selection.
Concerning the Navier–Stokes part �rst, we felt it important here, given the nature of the

�ow problem (i.e. advection-dominated), to choose an appropriate method of time discretiza-
tion which could be both A-stable and virtually non-dissipative, as well as being inherently
accurate (preferably, second order).
The fractional �-scheme with operator-splitting as variant [2, 3] seemed therefore a suitable

option, and in addition led to a favourable decoupling of the incompressibility constraint and
the non-linearity, as outlined below.
The underlying mechanism of this procedure can perhaps best be observed by considering

the following N -dimensional, �rst-order equation:

dq
dt
+ Aq= 0 for t¿0

with initial condition
q(0)= q0

where A is a known N ×N matrix, q0 is a known N -vector, and, for t¿0, q(t) is an unknown
N -vector to be determined. To apply this method, we �rst break the integration step into three
smaller sub-steps [tn; tn+��n], [tn+��n; tn+(1−�)�n] and [tn+(1−�)�n; tn+1] with �n := tn+1−tn
denoting the total time step, and �∈ (0; 0:5) an arbitrary parameter. Then, for each interval, we
‘split’ the matrix–vector term into an implicit and an explicit part, with each part a non-trivial
linear multiple of the original term evaluated at the ‘current’ and ‘previous’ time, respectively;
this is performed in the following manner:

qn+� − qn
��n

+ �Aqn+� + (1− �)Aqn = 0

qn+1−� − qn+�
(1− 2�)�n + �Aqn+� + (1− �)Aqn+1−� = 0

qn+1 − qn+1−�
��n

+ �Aqn+1 + (1− �)Aqn+1−� = 0

where �∈ ( 12 ; 1) is the single parameter controlling the splitting of the matrix–vector term.
With the choice �=1−√

2=2(≈ 0:293), we obtain a second-order accurate method, which
for positive-de�nite matrices A is unconditionally stable. Furthermore, choosing �=(1− 2�)=
(1−�)(≈ 0:586), ensures identical implicit operators for each of the three sub-intervals, which
eases computation.
Another important advantage of the fractional �-scheme is that eigenmodes are uniformly

damped, allowing steady-state �ows (or ‘near-steady-state �ows’, as is relevant here) to be
more reliably calculated.
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OPERATOR-SPLITTING FE APPROACH 1021

In Reference [2], the fractional �-scheme was applied with operator splitting as variant
to the Navier–Stokes equations in the following manner: with the above-described splitting
applied to the di�usion operator, the non-linear convection term is treated as full explicit in
the �rst and third steps, but full implicit in the second step; these rôles are exactly reversed for
the pressure gradient, while the incompressibility constraint is relaxed in the second step. The
general upshot of this form of discretization is to produce two distinct types of sub-problem:
(i) a self-adjoint, quasi-linear, Stokes system for unknown velocity and pressure and (ii) an
asymmetric, non-linear system for velocity only.
Finally, the thermal source terms are approximated using the (explicit) temperature value

at time tn, for each of the three steps. This simple approximation generally leads to the above
scheme being only �rst-order accurate, but we apply this nonetheless, since the overall system
(due to the ‘�rst-order accuracy only’ of the two types of energy-equation time discretizations
considered—described next) is forced to have this degree of accuracy anyway.
To assess and compare the e�ectiveness of di�erent forms of time discretization for the

energy equation, we considered two possibilities based on a �rst-order backward–Euler scheme
and a second-order Crank–Nicolson scheme.
For both cases, the advection term is treated semi-implicitly using the previous velocity

value (un), while the temperature part, as for the remaining terms in the energy equation, are
discretized according to the backward–Euler and Crank–Nicolson schemes. Although simple to
implement and naturally stable (unconditionally, moreover), the backward–Euler-type scheme
(hereafter referred to as BE) su�ers from numerical dissipation, as well as being only �rst-
order accurate—hence, not ideally suited to the nature of the problem in hand (as re�ected to
a certain extent in the results below); the Crank–Nicolson-type scheme (CN) is also of �rst-
order accuracy, owing to the (�rst-order) velocity coupling, but an important distinction to
BE is the inherent property of non-dissipation associated with Crank–Nicolson-type schemes.
We note that both schemes lead to asymmetric systems, whose solution procedure is

described below.

Finite-element discretization

For the spatial discretization of the model equations, a standard Bubnov–Galerkin �nite-
element method was applied using continuous, piecewise bi-quadratic basis functions for the
discrete velocity and temperature spaces (:=Vh), and continuous, piecewise bi-linear basis
functions for the discrete pressure space (:=Wh), i.e. the Taylor–Hood quadrilateral element,
Q2 − Q1. This element, ful�lling the requirements of the inf–sup (LBB) stability constraint,
avoids any possible complications with spurious pressure modes, and, as well as being rela-
tively straightforward to implement, gives a good balance between e�ciency of computation
and accuracy. For this element, the velocity and temperature are of second-order spatial ac-
curacy when measured relative to the H 1(�) norm, while pressure has the same degree of
spatial accuracy when measured relative to the L2(�) norm.

Solution procedure

Here we recapitulate the main aspects of the numerical solution procedure, in the order of
application:
(a) Specify u0, T0. (Both are zero-valued here.)

For n¿0:

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1019–1030



1022 D. DAVIS AND E. B �ANSCH

(b) Solve the energy equation for tn→ tn+1.
(c) Solve the Navier–Stokes equations with incompressibility constraint for:

(i) tn→ tn+�,
(ii) tn+�→ tn+1−�,
(iii) tn+1−�→ tn+1.

(d) Repeat (b), (c) until end-time= tE.

ALGEBRAIC SUB-PROBLEMS

Quasi-steady Stokes system

As described in the previous section, the application of the fractional �-scheme to the Navier–
Stokes part of our model equations renders a linear, self-adjoint system for the �rst and
third sub-steps, these resembling the steady Stokes equations. After full (time and space)
discretization, we need to solve a matrix system of the form(

A(�n) B

BT 0

)(
uch

pch

)
=

(
fch

0

)

Here A(�n) is the symmetric positive-de�nite (SPD) sti�ness matrix for the discrete velocity
uh=(uh; vh) whose corresponding co-ordinate vector (with respect to the given basis functions
of the discrete velocity space, Vh) is uch=[u

1
h; : : : ; u

Nv
h | v1h; : : : ; vNvh ], with Nv denoting the dimen-

sion of Vh, i.e. the number of velocity ‘nodes’. The matrix A depends on the discretization
parameter �n := ��n�

√
Pr=Ra, which we note is small in the problem under observation, (e.g.

�n=2:48× 10−5 for a time step as large as 0.1). Also here we have the discrete gradient
matrix B, its transpose (which represents discrete divergence), and the pressure vector, which
has an analogous de�nition to that for velocity, i.e. pch=[p

1
h; : : : ; p

Np
h ], with Np the number

of pressure ‘nodes’. Finally, fch denotes the co-ordinate vector of the discrete momentum
source term fh. For brevity, we have dispensed with time step superscripts on the vector
quantities.
Since A is invertible, we can form the Schur complement equation for the pressure vector

as follows:

C(�n)pch := (B
TA−1(�n)B)pch=B

TA−1fch

Moreover, since B has full rank and, owing to the relatively small pressure space (dimWh¡
dimVh) for the Taylor–Hood element, has more rows than columns, it follows that C is SPD
for any given (positive) �n. Unfortunately, however, its condition number explodes as �n→ 0+,
precluding the possibility of applying a suitable minimization solver, such as the method of
conjugate gradients (CG method). To circumvent the problem of large condition number, we
apply a special type of preconditioner, as �rst proposed in Reference [2].

Asymmetric advection system

This system, which arises from the spatially discretized form of the second step of the
fractional �-scheme for the Navier–Stokes equations, as well as from the full discretization of
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the energy equation, has the general form

Mxch= g
c
h

where M is an asymmetric 2Nv× 2Nv (or Nv×Nv, as appropriate) sti�ness matrix for the
coe�cient vector xch=[u

1
h; : : : ; u

Nv
h |v1h; : : : ; vNvh ] (or [T 1h ; : : : ; T Nvh ]), and gch the source term. Fur-

thermore, we note that M is variable dependent, in the former case. To solve this matrix
system, we applied the GMRES solver [4] using a Krylov subspace dimension of 15. In
addition, for the velocity solver, the ‘current’ velocity value was periodically used to update
the matrix M .

GRID GENERATION

Following the guidelines suggested in the Special Session Document [1], we selected grids
aligned with the co-ordinate directions and composed of Ex elements in the x-direction and Ey
elements in the y-direction, with Ex :Ey ≈ 1:5 (→ 1:5, as Ex, Ey→∞). Speci�cally, we ran our
computations on three di�erent grids with increasing re�nement: 11× 51 elements (‘coarse’),
21× 101 elements (‘medium’) and 41× 201 elements (‘�ne’).
Owing to the rapid �ow-variable changes near the walls, in particular the presence of strong

thermal boundary layers on the vertical walls, the grid required appropriate grading in these
regions. For this purpose, we de�ned the following functions:

h1(j)=

(
ĥ1(j)∑Ex
j1=1 ĥ1(j1)

)
W for j=1; : : : ; Ex

h2(k)=

(
ĥ2(k)∑Ey
k1=1 ĥ2(k1)

)
H for k=1; : : : ; Ey

These functions determine the width of the jth element in the horizontal direction, and the
length of the kth element in the vertical direction, respectively, where W (=1) denotes cavity
width and H (=8) cavity height.
Here

ĥ1(j)=
1

�h1(Ex + 1− 2j)2 + 2
for j=1; : : : ; Ex

and

ĥ2(k)=
1

�h2|Ey + 1− 2k|+ 2
for k=1; : : : ; Ey

control the element width and length distributions, respectively, for given Ex, Ey, where

�h1 :=W=Ex; �h2 :=H=Ey

are the average element width and average element height, in turn.
In Figure 1(a), a graded grid of medium re�nement is displayed, revealing, in particular,

the relative �neness at the walls; this is shown in greater detail for the south-west corner of
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Figure 1. Graded grid of a medium level of re�nement: (a) the whole domain and
(b) a close-up of the south–west corner.

the cavity in Figure 1(b) where the minimal element size is 0:012× 0:04. This region of the
cavity, together with its north–east counterpart (due to skew symmetry), was found to be the
most sensitive location in general, as regards rapid physical �ow changes within the cavity.
This is not least due to the strong thermal boundary layers occurring there; indeed, we based
our veri�cation that the grids were su�ciently graded near the walls, on whether or not the
temperature pro�le was su�ciently ‘smooth’ near the horizontal and vertical walls. All three
grid types (coarse, medium and �ne) were adjudged to pass this ‘test’ for the given grid
functions. Furthermore, with simple real analysis it can be shown that near the horizontal
and vertical walls

h1∼
(
2
√
2W
�

)
E−3=2
x ; h2∼

(
H 2

(H + 2) log(1 +H=2)

)
E−1
y

as Ex→∞, Ey→∞, respectively.

RESULTS

Computational results were obtained for each of the three grid types, and for both types of
energy solver—hence, a total of six cases. Based on the time history of the �ow solution
at various ‘points’ in the cavity (see Reference [1]), the computations reveal an initial ‘ac-
tive’ transient state lasting approximately 500 non-dimensional time units preceding a single-
frequency periodic state, as illustrated, for example, by Figure 2. Here the temperature and
velocity components in point 1, and the pressure di�erence between points 1 and 4 are shown.
These same �ow quantities are then depicted over a number of periods in Figure 3.
Three di�erent forms of data were required for the benchmark test, the �rst of these being

‘point data’, based on the measurement of �ow quantities at the given points in the cavity.
The measurement here is based on the average, amplitude (peak-to-valley) and the period of
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Figure 2. Time histories of dimensionless �ow quantities: (a) temperature in point 1;
(b) X -velocity component in point 1; (c) Y -velocity component in point 1 and (d) pressure

di�erence between points 1 and 4.

the �ow quantity under scrutiny. Before recording measurements, however, the period and
amplitude per cycle were �rst checked for consistency over ten cycles, to ensure that the �ow
was truly periodic. To calculate the average of the �ow quantity, we used Matlab’s internal
function. Tables I and II show point data for the energy-equation solvers BE and CN. An im-
mediate observation from the tables is that both solvers fail to produce oscillatory motion for
the coarse grid case—this is wholly consistent with one of the widely believed disadvantages
of working with the Taylor–Hood Q2 − Q1 element, i.e. its apparent inaccuracy on coarse
grids (see e.g. Reference [5, pp. 750–767] for a comparison of accuracy between various
quadrilateral (and triangular) �nite elements). The averages of the �ow quantities can be seen
to be most consistent, while the amplitudes are the least consistent; there is also a discrepancy
between the values for the amplitudes obtained for the BE and CN cases—our belief, how-
ever (given the theoretical knowledge on the types of solver) is that this is principally due to
the numerical damping e�ects present in the former case, and therefore we put more
faith in our calculated amplitudes for CN (which theoretically has no numerical dissipative
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Figure 3. Oscillatory behaviour of �ow quantities during periodic phase: (a) temperature in point 1;
(b) X -velocity component in point 1; (c) Y -velocity component in point 1 and (d) pressure

di�erence between points 1 and 4.

e�ects)—this was later con�rmed by the accepted ‘true’ numerical values from Reference
[6]. Other noticeable features include the negligible skewness (de�ned as the average of the
temperature values at points 1 and 2) found in all cases, and implying the expected skew-
symmetric nature of the perturbation. Finally, we can see that the calculated period di�ers
only slightly from the medium grid to the �ne grid; our ‘best’ prediction of this was 3.412,
(based on the �ne grid of CN), and this turned out to have a deviation of just 0.015% from
the ‘true’ solution of Reference [6].
Next, ‘wall data’ values were recorded, speci�cally, the Nusselt numbers on the vertical

walls. We �rstly note than the skew symmetry of the �ow perturbation should ensure that the
values are identical on each wall—this proved to be the case. Figure 4 shows the time history
of the Nusselt number on either vertical wall, and reveals very strong initial wall gradients
becoming heavily damped before the periodic phase is reached. This again underlines the
need for careful grading on the walls, especially during the initial stages of the transient
phase. Table III shows the Nusselt values for the CN solver, and for the non-stationary
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Table I. Point data computed using the BE solver.

Grid resolution: 11× 51 Grid resolution: 21× 101 Grid resolution: 41× 201
Time duration: N=A Time duration: 50 Time duration: 50
Steps per period: N=A Steps per period: 344 Steps per period: 344

Quantity Ave Amp Per Ave Amp Per Ave Amp Per

X -velocity 0.055 S S 0.058 0.046 3.44 0.056 0.046 3.44
Y -velocity 0.463 T T 0.461 0.068 3.44 0.462 0.068 3.44
Temperature 0.264 E A 0.266 0.036 3.44 0.266 0.036 3.44
Skewness 0 A T 0 — — 0 — —
�P14 −0.001 D E −0.002 0.018 3.44 −0.002 0.018 3.44
�P51 −0.528 Y −0.534 0.020 3.44 −0.535 0.020 3.44
�P35 0.529 0.536 0.008 3.43 0.537 0.008 3.44

Table II. Point data computed using the CN solver.

Grid resolution: 11× 51 Grid resolution: 21× 101 Grid resolution: 41× 201
Time duration: N=A Time duration: 50 Time duration: 50
Steps per period: N=A Steps per period: 341 Steps per period: 341

Quantity Ave Amp Per Ave Amp Per Ave Amp Per

X -velocity 0.0551 S S 0.0552 0.0494 3.408 0.0563 0.0542 3.412
Y -velocity 0.4632 T T 0.4613 0.0720 3.407 0.4617 0.0764 3.413
Temperature 0.2641 E A 0.2655 0.0396 3.407 0.2655 0.0422 3.412
Skewness 0 A T 0 — — 0 — —
�P14 −0.0014 D E −0.0021 0.0192 3.407 −0.0018 0.0202 3.412
�P51 −0.5279 Y −0.5343 0.0212 3.409 −0.5347 0.0222 3.413
�P35 0.5293 0.5362 0.0092 3.407 0.5366 0.0100 3.412

900 905 910 915 920 925 930 935 940
_4.586

_4.585

_4.584

_4.583

_4.582

_4.581

_4.58

_4.579

_4.578

_4.577

Dimensionless time

D
im

en
si

on
le

ss
 N

us
se

lt 
nu

m
be

r

0 2 4 6 8 10 12 14 16 18 20

_60

_50

_40

_30

_20

_10

0

Dimensionless time

D
im

en
si

on
le

ss
 N

us
se

lt 
nu

m
be

r

(a) (b)

Figure 4. Time history of the Nusselt number on vertical walls: (a) global pro�le and (b) local oscillatory
behaviour during periodic phase.
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Table III. Wall data computed using the CN solver.

Grid resolution: 11× 51 Grid resolution: 21× 101 Grid resolution: 41× 201
Time duration: N=A Time duration: 50 Time duration: 50
Steps per period: N=A Steps per period: 341 Steps per period: 341

Quantity Ave Amp Per Ave Amp Per Ave Amp Per

Nu (x=0) −4:6217 ST. ST. −4:5819 0.0068 3.408 −4:5796 0.0070 3.412
Nu (x=W ) −4:6217 STATE STATE −4:5819 0.0068 3.408 −4:5796 0.0070 3.412
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Figure 5. Time history of the velocity metric (=
√
KE): (a) global pro�le and (b) local oscillatory

behaviour during periodic phase (zeroed on 0.2394).

cases (medium and �ne grids) we see that the average has a value around −4:58, while the
amplitude is relatively small at O(10−2).
Finally, ‘global data’ in the form of a velocity metric, de�ned as the square root of the

kinetic energy (KE) was computed. Figure 5(a) shows the time history of the velocity metric
from a global perspective, and it can be seen that this quantity appears to approach steady
state, as the periodic phase is approached. In fact, closer inspection (Figure 5(b)) reveals that
the velocity metric undergoes small periodic oscillations during this phase. This behaviour is
attributable to a weak viscous dissipation (∼(Pr=Ra)1=2) of the rate of change of KE, as can be
veri�ed directly by taking the L2(�) inner product of the momentum terms and the velocity
and implementing the incompressibility condition and the homogeneous velocity boundary
conditions. In Table IV the speci�c velocity metric values are tabulated and they indicate that
a characteristic value for the speed of �uid is about 0.240.
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Table IV. Global data computed using the CN solver.

Grid resolution: 11× 51 Grid resolution: 21× 101 Grid resolution: 41× 201
Time duration: N=A Time duration: 50 Time duration: 50
Steps per period: N=A Steps per period: 341 Steps per period: 341

Quantity Ave Amp Per Ave Amp Per Ave Amp Per

û (=
√
KE) 0.2400 ST. STATE 0.2394 2:98× 10−5 3.407 0.2395 3:30× 10−5 3.412

COMPUTATIONAL RESOURCES

The computations were performed on a Compaq XP1000 (single-processor) machine with
a clock rate of 500 MHz, total memory of 256 Mb, a peak �op of 500MFLOPs and a
Specfp95 rating of 53.9. The CPU=grid point=time step was measured to be approximately
490 �s=pt:=step, while approximately 4 Kb of memory per grid point was required.

CONCLUSIONS

The computational results (as re�ected, to a degree, in Tables I and II) suggest that the
amplitudes of the �ow quantities are the most sensitive to time step size and grid resolution,
compared to the averages and the periods. Despite this however, a time step size of 0.01
on the �nest grid (41× 201 elements) proved to be su�cient in obtaining a (time step- and
grid-) converged and accurate solution.
In general, the CN solver performed better (regarding accuracy) than the BE solver (and

at no extra cost in terms of computing time), and in view of the earlier comments on numer-
ical damping with advection-dominated problems, this is perhaps no surprise. However, both
solvers failed to yield a periodic solution after the transient phase on the coarsest grid (11× 51
elements), although this is believed to be attributable to the (widely accepted) intrinsic inaccu-
racy of the Q2−Q1 �nite element on ‘too-coarse’ grids. (By comparison, the elements Q1−Q0
(bi-linear velocity and temperature, piecewise-constant pressure) and Q2 − Q−1 (biquadratic
velocity and temperature, piecewise-bi-linear pressure) were reported to yield periodic solu-
tions on a grid of comparable coarseness to our ‘coarse’ version [7], although it should also
be noted that these elements fail the inf–sup stability condition. The accuracy of the Q2−Q1
element on su�ciently �ne grids was also reported by another benchmark contributor [8].)
Finally, we remark that we obtained virtually zero skewness in our calculations, a feature

consistent with the skew-symmetric nature of the instability mode [1].
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